Nuprl Lemma : rel_le_refl_cl_sp
13,42
postcript
pdf
T
:Type,
r
:(
T
T
). dec_binrel(
T
;
x
,
y
:
T
.
x
=
y
T
)
anti_sym(
T
;
r
)
(
r
>{
T
} ((
r
\)
))
latex
Up
gen
algebra
1
Definitions of Statement
E
>{
T
}
E'
,
x
,
y
:
T
.
E
(
x
;
y
)
,
dec_binrel(
T
;
r
)
,
anti_sym(
T
;
R
)
,
E
,
E
\
Definitions
t
T
,
AntiSym(
T
;
x
,
y
.
R
(
x
;
y
))
,
E
\
,
E
,
E
>{
T
}
E'
,
anti_sym(
T
;
R
)
,
x
,
y
:
T
.
E
(
x
;
y
)
,
dec_binrel(
T
;
r
)
,
P
Q
,
,
x
:
A
.
B
(
x
)
,
P
&
Q
,
P
Q
,
A
,
Dec(
P
)
,
False
Lemmas
decidable
wf
,
not
wf
origin